# Fraction calculator

The calculator performs basic and advanced operations with fractions, expressions with fractions combined with integers, decimals, and mixed numbers. It also shows detailed step-by-step information about the fraction calculation procedure. Solve problems with two, three, or more fractions and numbers in one expression.

## Result:

### 4 1/9 - 3 3/5 = 23/45 ≅ 0.5111111

Spelled result in words is twenty-three forty-fifths.### How do you solve fractions step by step?

- Conversion a mixed number 4 1/9 to a improper fraction: 4 1/9 = 4 1/9 = 4 · 9 + 1/9 = 36 + 1/9 = 37/9

To find a new numerator:

a) Multiply the whole number 4 by the denominator 9. Whole number 4 equally 4 * 9/9 = 36/9

b) Add the answer from previous step 36 to the numerator 1. New numerator is 36 + 1 = 37

c) Write a previous answer (new numerator 37) over the denominator 9.

Four and one ninth is thirty-seven ninths - Conversion a mixed number 3 3/5 to a improper fraction: 3 3/5 = 3 3/5 = 3 · 5 + 3/5 = 15 + 3/5 = 18/5

To find a new numerator:

a) Multiply the whole number 3 by the denominator 5. Whole number 3 equally 3 * 5/5 = 15/5

b) Add the answer from previous step 15 to the numerator 3. New numerator is 15 + 3 = 18

c) Write a previous answer (new numerator 18) over the denominator 5.

Three and three fifths is eighteen fifths - Subtract: 37/9 - 18/5 = 37 · 5/9 · 5 - 18 · 9/5 · 9 = 185/45 - 162/45 = 185 - 162/45 = 23/45

For adding, subtracting, and comparing fractions, it is suitable to adjust both fractions to a common (equal, identical) denominator. The common denominator you can calculate as the least common multiple of both denominators - LCM(9, 5) = 45. In practice, it is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 9 × 5 = 45. In the following intermediate step, the fraction result cannot be further simplified by canceling.

In other words - thirty-seven ninths minus eighteen fifths = twenty-three forty-fifths.

#### Rules for expressions with fractions:

**Fractions**- simply use a forward slash between the numerator and denominator, i.e., for five-hundredths, enter

**5/100**. If you are using mixed numbers, be sure to leave a single space between the whole and fraction part.

The slash separates the numerator (number above a fraction line) and denominator (number below).

**Mixed numerals**(mixed fractions or mixed numbers) write as integer separated by one space and fraction i.e.,

**1 2/3**(having the same sign). An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both signs for fraction line and division, we recommended use colon (:) as the operator of division fractions i.e.,

**1/2 : 3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

The colon

**:**and slash

**/**is the symbol of division. Can be used to divide mixed numbers

**1 2/3 : 4 3/8**or can be used for write complex fractions i.e.

**1/2 : 1/3**.

An asterisk

*****or

**×**is the symbol for multiplication.

Plus

**+**is addition, minus sign

**-**is subtraction and

**()[]**is mathematical parentheses.

The exponentiation/power symbol is

**^**- for example:

**(7/8-4/5)^2**= (7/8-4/5)

^{2}

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• exponentiation of fraction: 3/5^3

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• multiplying a fraction by a whole number: 6 * 3/4

• square root of a fraction: sqrt(1/16)

• reducing or simplifying the fraction (simplification) - dividing the numerator and denominator of a fraction by the same non-zero number - equivalent fraction: 4/22

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5 ÷ 2/3

The calculator follows well-known rules for

**order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

Be careful, always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) has the same priority and then must evaluate from left to right.

## Fractions in word problems:

- Bucket of clay

Tina and Bill share a 12-ounce bucket of clay. By the end of the week, Tina has used 1/6 of the bucket, and Bill has used 2/3 of the bucket of clay. How many ounces are left in the bucket? - Jose studied

Jose studied for 4 and 1/2 hours on Saturday and another 6 and 1/4 hours on Sunday. How many subjects did he study if he has alloted 1 and 1/2 hours per subject on Saturday and 1 and 1/4 hours per subject on Sunday? - Benhur

Benhur boiled 1 1/4 liters of water in a kettle. After 10 1/2 minutes he measured the water again. It had 3/4 liters left in the kettle. What is the amount of water that evaporates every minutes? - Fractions and mixed numerals

(a) Convert the following mixed numbers to improper fractions. i. 3 5/8 ii. 7 7/6 (b) Convert the following improper fraction to a mixed number. i. 13/4 ii. 78/5 (c) Simplify these fractions to their lowest terms. i. 36/42 ii. 27/45 2. evaluate the follow - Half of halves

Half of the square we cut off, then half of the rest, etc. Five cuts we made in this way. What part of the content of the original square is the content of the cut part? - There 17

There is 3/4 of a cake on a plate in Maria's kitchen. Silvia sees the cake and eats 1/5 of the cake. Then Franca takes 1/3 of what was there and shares half of her portion with Antonella. What fraction of the cake is left? - Sixth graders

About 6/9 of the sixth- grade pupils will be going to the parents' seminar. If 1/6 of the participants are girls, what part of the portion of sixth graders are boys? - 5 2/5

5 2/5 hours a week mathematics, 3 3/4 hours a week Natural sciences, 4 3/8 hours a week Technology . how many hours does he spend on social sciences if he spend 17 1/2 hours a week for the four subject? - Hotel 4

A 360 room hotel has 1/3 of its rooms occupied at present. How many rooms are empty? - Pounds

Three pounds subtract 1/3 of a pound. - Sundar

Sundar has 50 chocolates. He gave 2/5 of these chocolates to Ram and he ate 1/5 of them. How many chocolates are left with Sundar? - Leo hiked

Leo hiked 6/7 of a kilometer. Jericho hiked 2/3 kilometer. Who covered a longer distance? How much longer? - Mrs. Susan

Mrs. Susan bought 1/8 m of curtain cloth. She used 3/5 m to make a curtain for the living room window. How many meters of cloth were not used?

next math problems »